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LETTER TO THE EDITOR 
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systems 
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3NP. UK 

Received 11 January 1995 

Abstract We propose a simple reaction-diffusion model describing a class of competitive 
multi-species reactions. The model is exactly solvable at its upper critical dimension d. = 2. The 
local moments of the component concentrations follow a power-law decay with exponents which 
vary continuously with system parameters. The exponents also have an underlying muliifmctal 
specmm. The main results are supported by results from a numerical integradon of the model. 

Reaction-diffusion systems continue to attract the attention of many workers in the wider 
field of non-equilibrium phenomena [l]. This is due in part to their obvious relation to 
chemical kinetics, where a better understanding of scaling laws is desirable. However, the 
applicability of these model systems is really far wider since they may be considered as a 
natural description of many systems with spatial degrees of freedom along with dynamic 
competition among different species (such as the diverse examples of population-dynamics, 
and monopole annihilation in the early universe). The most studied examples in the 
theoretical physics literature are the reactions A + A + inert and its close relative A 
+ B -+ inert [Z]. Each of these systems has an upper critical dimension du (equal to 2 
and 4, respectively) above which the scaling exponents are equal to predictions from naive 
power counting. Below d,,, the restrictions imposed from low-dimensional spatial diffusion 
become relevant and the exponents are dramatically changed. The simplest scenario is that of 
an initially homogeneous mixture of reagents decaying to some uniform asymptotic state. 
Renormalization-group calculations have recently been performed for this case, yielding 
exact vdues for the exponents describing the decay of the component concentrations [3]. 

In this letter we propose a model of a simple (and rather generic) thiee-component 
reaction-diffusion system. This model is found to have surprisingly rich scaling properties 
at its upper critical dimension. We shall motivate it here in the language of chemical 
kinetics, but we stress that its application is not limited to this field. We imagine the 
following reactions involving components A, B and C 

2 A + C a  2A 

2 B + C  4 2B (1) 

A + B + C % 3 C . .  , 

t Permanent address: lnstihlt FUr Theoretische Physik, Univenit2t zu Koln. D-50937 Koln, Germany. 
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This system of reactions annihilates the component C in regions which are rich in either A 
or B. The component C can prosper only in regions which have sufficiently high amounts of 
both A and B. Therefore C acts as a tracer-marking out the complex boundaries separating 
the regions where A or B dominates. There are many potential applications of this model 
in population dynamics and related fields, since C is basically parasitic-it can only survive 
when its 'predators' A and B are simultaneously present, taking advantage of their mutual 
annihilation. 

The translation of the chemical equations above into a mathematical model may be 
achieved at various levels of precision and sophistication; ranging from simple rate equations 
(with no spatial degrees of freedom) to a full description of the microscopic processes via 
a master equation formulation. The approach we shall persue here lies midway between 
these two extremes in that we shall neglect the intrinsic stochasticity of the dynamics, but 
we shall retain the spatial degrees of freedom in order to take account of possibly important 
effects arising from long-range spatial fluctuations. It is generally understood that there exist 
critical dimensions above which these types of approximations become valid. We expect 
the level of description used here to be sufficient above spatial dimension d = 1 since the 
basic reaction is tri-molecular [3]. We shall see that spatial fluctuations may be neglected 
for d > 2. The main results of this letter are for the cased = 2-the (upper) critical point 
of the model. 

At this level of approximation the above reactions may be described by the following 
partial differential equations: 

&a = DVZa - ksa b p 

&p = D'V'p - klaZ p - kzb2 p + Ursa b p 

arb = DV2b - k3abp (2) 

where the concentration fields are a = [A], b = [B], and p = [C], and D is the diffusion 
constant for the A and B particles, whilst D' is that for the C particles. 

This letter is concerned with exact results, and in order to achieve this we shall make 
two choices concerning the parameters in the model. Firstly, we shall take the rate constants 
( k , ,  k2,  k,)  to be equal, with value k .  Secondly, we shall, allow spatial diffusion only for the 
A and B particles. The C particles will be taken to be immobile (D' = 0). The relaxation 
of the above constraints makes the model intractable analytically. However, a numerical 
investigation into the properties of the full model is currently underway; in particular, the 
model is seen to develop a sharp phase transition (in the steady state) o n  variation of the 
rate constant k3 with respect to kl and kz. Details are expected to be presented in a future 
report [4]. 

Due to the symmetry between A~ and B particles, it suffices to consider only the 
concentration field U = [A] - [B]. The above equations then take the form 

aru = D V ~ U  a rp - - -ko p .  (3) 
As an initial condition, we shall consider a uniform distribution of C particles, along with 
a random distribution (assumed to be Gaussian and delta correlated) for the A and B 
particles. The case of initially separated A and B particles forming a steady diffusion 
front of C particles will be treated in [4]. We therefore take p(z,O) = 1,Vz; and 
u(r.0) = uo(z), where U" is a Gaussian distributed random variable with zero mean 
and correlator (uo(r)uo(z')) = AS(% - r'). 

At a purely formal level this problem reduces to calculating non-trivial statistics 
(connected, with the p field) in relation to the simple problem of the diffusion equation. 
The picture one should have in mind is that the p field may only survive in the presence 
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Flyre 1. A contour plot of the density field p from numerical integration of (3) for a system 
of size 128 x 17.8. Darker reaons correspond to higher values of p. 

of zero diffusion .field (C particles prospering in regions r i th  in A and 13). The contours 
of zero diffusion field are, however, constantly evolving (and coarsening) therefore leading 
to 'smearing' and long-term memory effects in the decay of the p field. Figure 1 shows a 
contour plot of the density field p for a system of size 128 x 128 at some late stage of the 
evolution. 

In this letter we shall concentrate on calculating the local moments of the density p 
defined by p&) (p'). We start by studying the system at the mean-field (MF) level. This 
amounts to replacing the right-hand side of (3b)  by -k(u*),p. The mean-square fluctuations 
in U are easily evaluated from the diffusion equation giving (U') = h ( 8 ~ D i ) - ~ / ' .  We 
therefore have 

exp (-cI r i  

where ci and cz are constants, yr(@)  = r @ / 8 r  and @ = k A / D .  So even at the MF level, 
the system shows quite rich behaviour. There is an upper critical dimension d, = 2 above 
which the local moments of the density decay asymptotically to a constant. Below du the 
moments decay as stretched exponentials. Exactly at d. the moments decay in power-law 
fashion with exponents which depend continuously on the system parameters through the 
quantity 6. The exponents also have the striking property 

~rr,(41) = r,(rl@l/rd.  (5 )  
It is important to understand how much of the MF behaviour is relevant to  the^ real 

evolution of the system. We shall tackle this question ,in the following way. Consider 
generalizing the system by changing U into an a-component vector U = (U, ,  . . . , U").  
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(We stress here, before ,continuing with the discussion, that the purpose of this 
generalization is to nwtivaie an exact solution for all values of n, including n = 1 which 
corresponds to the original model (equation (3)). The n-component model should not be 
considered too seriously as an interesting model in its own right, at least in the context of 
reaction-diffision systems.) 

We write the analagous model equations as 

alp = -(k/n)u;qp ala;. = D V ~ U ; .  (6) 
The initial conditions are the same as in the'scalar case, with the initial correlator for the 
up field being generalized to (U!(Z)G,?(Z')) = A.S;,$(z - 5'). Therefore the components 
ui evolve independently, although they are summed together in the effective decay rate of 
the p field. The vector model defined above reduces to the original model defined in (3) 
for n = 1. 

The motivation for this generalization is the following. An exact analysis of (6) reveals 
that the limit of n + CO is fokally equivalent to the MF approximation. One may therefore 
systematically expand around MF by expanding in the parameter l /n.  It turns out that one 
can calculate this expansion to all orders. For d > d. one finds no corrections to the MF 
result-the moments still relax to constant ,values for large times. For d < d, one finds 
that the expansion is divergent for large times-indicating that the MF result is incorrect 
(for finite n). Improvement on "may be effected by either an RG analysis of the present 
expansion technique, or by analysis of an eigenvalue expansion, which we shall outline later 
in this letter. Ford =-du, we shall find that each term of the expansion is relevant and that the 
power-law decay predicted by the MF approximation persists, but with a more complicated 
form for yr($). The expansion becomes divergent, however, for r@ > 1r/In2-in which 
case, a new technique is again required. In the remainder of this letter we shall restrict 
ourselves to d = d.(=~2) and concentrge on the evaluation of y,(@) for r@ < n/ In 2. This 
letter is concerned with results, and we shall therefore only give the briefest outline of the 
evaluation of y&). We plan to give a fuller account in a longer paper 141. 

One may write the exact solution of the diffusion equation for U, in terms of the heat 
kernel g(z, I )  = (4rDr)-' exp(-xZ/4Dr). Integrating the equation for p then gives the 
exact expression 

~~ 

The required average is over a Gaussian distribution, so that in order to calculate p,(t), 
one must evaluate what is essentially a Gaussian path-integral. However, the calculation 
of the resulting determinant appears to be non-trivial due to the non-local structure of the 
covariance matrix. The determination of the eigenvalues of this matrix requires the solution 
of an integral equation which may be the best non-perturbative approach to analyse the 
cases of (i) d < d, and (ii) d = d, with r$ > ?r/In2. In this letter we shall pursue the 
expansion technique about the MF solution. We therefore expand the exponential in (7) and 
average each term separately. After averaging, it becomes clear that the expansion may 
be rewritten in terms of an effective generating function for connected averages, much the 
same as one uses in standard field theory. The connected averages in the present case are 
not cumulants, but completely connected cyclic averages of the random fields. In terms of 
these cyclic averages one has 

m 

Inp,(t) = ( - - r + / 4 ~  C M O / ~ !  (8) 
m=1 
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where 

A,@) = (m - l)'! (-r@/kn),-' S dti . . .- S ~ ,  dt, (ti + tz)-I . . . (t, +ti)-' . (9) 

On evaluating the cyclic time integrals one finds *at all terms in $e sum are proportional 
to In(r/to)  with no corrections) and therefore the power-law decay p&) = ( t / to ) -Y ,  is 
still valid. The parameter n labels the order of the expansion, but at this level is seen to 
simply scale the value of @-we shall henceforth take n = I. 

ra ro 

The exact fom.for the exponent y, is found to be 

where the numbers (ap] are given by 

where $(z) is the Psi, or digamma function [5]. This is the main result of the paper. From 
this exact result we see that y, is still a function of @ only, and also that the relation shown 
in (5) still holds. However, ,we see that the property of 'gap' scaling (yr a r )  which held 
at the MF level, is now lost. 

The validity of (10) is restricted to r& < n / h 2  since the logarithm in the expression 
for y, originates from a series expansion with radius of convergence a, r@/n = 1. The 
largest member of the set (a,} is ao = In2-hence the condition. 'However, it is possible 
that one may be able to analytically continue this expansion for larger values of r4 such 
that the above expression for y, involving the logarithm ii still valid. This possibility may 
only be verified through one of the alternative calculational procedures mentioned earlier. 

To test our results, we have performed a numerical integration of the model equations (3). 
In order to measure averaged quantities with good precision we used a system of size 
512 x 512. Figure 2 shows a log-log plot of the local moments fi, versus time, for 
two choices of the system parameter 4. It is clearly seen 'that the moments indeed decay 
in power-law fashion with exponents depending upon the parameter @; and also that the 
relation (5) is satisfied. A direct comparison of the measured values of y~ with the exact 
result (IO) is shown in figure 3 for 0 < @ < n/In2. Good agreement is seen for smaller 
values of 4.  As @ approaches the critical value njln2, the measured value of y, deviates 
by about IOW from the exact result. This discrepancy is thought to be due to finite-size 
effects as evidenced by the improvement of the agreement between the exact result and 
the numerical prediction on increasing the system size to 1024 x 1024 (see figure 3).' The 
exponents obtained numerically show no noticable discontinuity as r@ passes through n / ln2  
indicating that the analytic continuation hypothesis for the form of yr shown in (IO) may 
be correct. 

Before concluding we shall briefly describe a multifractal analysis of our main result 
(equation (IO)). We refer the reader to Halsey'er af [6] 'for a thorough discussion of the 
following interpretation of multifractals (for a wider discussion, see also [7].) We have the 
basic result (p(t ) ' )  - (to/t)" with y,(@) given above. As noted earlier, the moments of 
the density field do not obey simple 'gap' scaling as the exponents y, are not proportional 
to r-this is a hallmark of multifractal scaling. Following [6] we regard t h e  density field 
as a function on the space defined by the support of.t, which in this case is just the real 
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- 1.2 L 
Figure 2. Log-log plot of the local moments p,(f) versus time. from a numerical integrmion of 
(3) for a system of size 512 x 512. The fuil curves are for 9 = rr/(lOln 2) with r = I ,  . . . , IO. 
The circles are for Q = a/(21n2) with r = I .  2. In each case r increases from top Lo bottom. 

Figure 3. The 'exponent yj(+j versus 9. The full curve is the exacl result as given 'in (IO). 
The circles are from numerical integration of (3) for a system of size 512 x 512. The single 
square data point at the critical value of @ is from numerid integration of a system of size 
1024 x 1024. 
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Figure 4. Multifnctd scaling curves f(a) for values of 4 = 2" x 0.1 with n = 1.2 .3 .4 .  The 
broken C U N ~ S  correspond to values of r4 > n/ InZ for which the analytic expression (IO) is 
not proven to hold. 

(time) axis which has dimension equal to unity (this sounds pedantic, but in applications 
to spatial multifractality like DLA, the support-i.e. the cluster-is itself fractal.) We then 
define a measure with respect to this function 

I 

with to < t* < t .  One then postulates scaling of momem of the measure: Sdt'y(t')' - 
(tO/t)". The two sets of exponents are related via [SI 

4 = yr - 1 + r(1 - ~ 1 ) .  (13) 
The familiar .function f ( a )  i s  generated from the exponents r, by the parametrization: 
01 = dr/dr and f = p a  - 7 .  For the present case, f and a are both continuously dependent 
on the system parameter +-the explicit expressions are complicated and wilhot be written 
here. In figure 4 we present some sample f(a) curves for various values of +. These curves 
may not be collapsed by rescaling with respect to @. 

In conclusion we have proposed and analysed a simple three-component reaction- 
 diffusion^ model. It is found to have an upper critical dimension. of 2, above which the 
density field p relaxes to a non-zero value. Precisely at d = 2, one may solve the model 
exactly for a range of parameter values. One finds power-law decay of local moments of the 
density field p r ,  with exponents yr which are continuous functions of the system parameters, 
and which are also described by an underlying multifractal spectrum. It is of interest to 
determine the generality of this non-universal scaling in the wider class of multi-component 
reaction-diffusion systems. 

to 
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